
Secret Messages

Introduction:
In this project, you’ll learn how to make your own encryption program, to send
and receive secret messages with a friend. This project ties in with the “Earth to
Principa” activity on page 16 of the Space Diary.

Step 1: The Caesar cipher
A cipher is a type of secret code, where you swap the letters around so that no-
one can read your message.

You’ll be using one of the oldest and most famous ciphers, the Caesar cipher,
which is named after Julius Caesar.

Before we start coding, let’s try using the Caesar cipher to hide a word.

Activity Checklist

Hiding a word is called encryption.

Let’s start by encrypting the letter ‘a’. To do this, we can draw the
alphabet in a circle, like this:

1

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

To make a secret encrypted letter from a normal one, you need to have
a secret key. Let’s use the number 3 as the key (but you can use any
number you like).

To encrypt the letter ‘a’, you just move 3 letters clockwise, which will
give you the letter ‘d’:

You can use what you’ve learnt to encrypt an entire word. For example,
‘hello’ encrypted is ‘khoor’. Try it yourself.

h + 3 = k
e + 3 = h
l + 3 = o
l + 3 = o
o + 3 = r

Getting text back to normal is called decryption. To decrypt a word, just
subtract the key instead of adding it:

2

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Challenge: Use a Caesar cipher

Can you send a secret word to a friend? You’ll both need to
agree on a secret key before you start.

You could even send entire sentences to each other!

Step 2: Encrypting letters
Let’s write a Python program to encrypt a single character.

Activity Checklist

k - 3 = h
h - 3 = e
o - 3 = l
o - 3 = l
r - 3 = o

Open the blank Python template Trinket: jumpto.cc/python-new.

Instead of drawing the alphabet in a circle, let’s write it out as an
alphabet variable.

Each letter of the alphabet has a position, starting at position 0. So the
letter ‘a’ is at position 0 of the alphabet, and ‘c’ is at position 2.

You can get a letter from your alphabet variable by writing the position in

3

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

http://jumpto.cc/python-new

square brackets.

You can delete the print ststements once you’ve tried this out.

Next, you’ll need to store the secret key in a variable.

Next, ask the user for a single letter (called a character) to encrypt.

Find the position of the character .

You can test the stored position by printing it. For example, that

character ‘e’ is at position 4 in the alphabet.

To encrypt the character , you should add the key to the position .

4

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Test out your new code. As your key is 3, it should add 3 to the

position and store it in your newPosition variable.

For example, letter ‘e’ is at position 4. To encrypt, you add the key (3),

giving 7.

What happens when you try and encrypt the letter ‘y’?

Notice how the newPosition is 27, and there aren’t 27 letters in the

alphabet!

You can use a % to tell the new position to go back to position 0 once it

gets to position 26.

5

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Save Your Project

Challenge: Variable keys

Finally, you want to print the letter at the new position.

For example, adding the key to the letter ‘e’ gives 7, and the letter at
position 7 of the alphabet is ‘h’.

Try out your code. You can also remove some of your print statements,
just printing the new character at the end.

6

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Modify your program, so that the user can enter their own key
to use. You’ll need to get the user’s input, and store it in the
key variable.

Remember to use the int() function to convert the input to a

whole number.

You can then use a negative key to decrypt messages!

Save Your Project

Step 3: Encrypting entire messages
Instead of just encrypting and decrypting messages one character at a time, let’s
change the program to encrypt entire messages!

Activity Checklist

Firstly, check that your code looks like this:

Create a variable to store the new encrypted message.

7

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Change your code to store the user’s message and not just one
character.

Add a for loop to your code, and indent the rest of the code so that it is

repeated for each character in the message.

Test your code. You should see that each character in the message is
encrypted and printed one at a time.

8

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Let’s add each encrypted character to your newMessage variable.

You can print the newMessage as it is being encrypted.

If you delete the spaces before the print statement, the encrypted

message will only be displayed once at the end. You can also delete the
code for printing the character positions.

9

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Save Your Project

Step 4: Extra characters
Some characters aren’t in the alphabet, which causes an error.

Activity Checklist

Test out your code with some characters that aren’t in the alphabet.

For example, you could use the message hi there!! .

Notice that the space and the ! characters are all encrypted as the

letter ‘c’!

To fix this, you only want to translate a character if it’s in the alphabet.
To do this, add an if statement to your code, and indent the rest of your

code.

10

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Save Your Project

Challenge: Encrypting and decrypting
messages

Encrypt some messages, and give them to a friend along with
the secret key. See if they can decrypt them using their
program!

Test your code with the same message. What happens this time?

Now, your code just skips any character if it’s not in the alphabet.

It would be better if your code didn’t encrypt anything not in the
alphabet, but just used the original character.

Add an else statement to your code, which just adds the original

character to the encrypted message.

Test your code. You should see that any character in the alphabet is
encrypted, but any other characters are left alone!

11

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

You could also duplicate the project and create a separate
program for decrypting messages.

Save Your Project

Challenge: Friendship calculator

Write a program to show how compatible 2 people are, by
calculating a friendship score.

The program could loop through each of the characters in the
2 names, and add points to a score variable each time certain

letters are found.

You should decide on rules for awarding points. For example,
you could award points for vowels, or characters that are
found in the word “friend”:

You could also give the user a personalised message, based
on their score:

12

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

Save Your Project

13

This content is for non-commercial use only and we reserve the right at any time to withdraw permission for use. © 2012-2016 Raspberry Pi Foundation. UK
Registered Charity 1129409

	Secret Messages
	Introduction:
	Step 1: The Caesar cipher
	Activity Checklist
	Challenge: Use a Caesar cipher

	Step 2: Encrypting letters
	Activity Checklist
	Save Your Project
	Challenge: Variable keys
	Save Your Project

	Step 3: Encrypting entire messages
	Activity Checklist
	Save Your Project

	Step 4: Extra characters
	Activity Checklist
	Save Your Project
	Challenge: Encrypting and decrypting messages
	Save Your Project
	Challenge: Friendship calculator
	Save Your Project

