
Projects

Where is the Space Station?

Find the exact location of the ISS

Python

Step 1 Introduction

In this project you will use a web service to find out the current

location of the International Space Station (ISS) and plot its location

on a map.

Instructions

The space station icon shows the current location of the ISS. The

yellow text shows when the ISS will next pass over the Space Centre

in Houston, US.

What you will learn

This project covers elements from the following strands of the

Raspberry Pi Digital Making Curriculum

(http://rpf.io/curriculum):

• Combine programming constructs to solve a problem.

(https://www.raspberrypi.org/curriculum/programming/builder)

Step 2 What you will need

Hardware

• A computer with internet connection

Software

• Trinket (https://trinket.io/) online editor

Additional resources

• Starter project - rpf.io/iss-on (http://rpf.io/iss-on)

• A completed version of this project -

trinket.io/python/5d3327334d

(https://trinket.io/python/5d3327334d)

• Open Notify webservices - api.open-notify.org

(http://api.open-notify.org/)

Step 3 Who is in space?

You’re going to use a web service that provides live information

about space. First, let’s find out who is currently in space.

A web service has an address (URL) just like a website does. Instead

of returning HTML for a web page, it returns data.

• Open the web service (http://api.open-notify.org/astros.json)

in a web browser.

You should see something like this:

{

 "message": "success",

 "number": 3,

 "people": [

 {

 "craft": "ISS",

 "name": "Yuri Malenchenko"

 },

 {

 "craft": "ISS",

 "name": "Timothy Kopra"

 },

 {

 "craft": "ISS",

 "name": "Timothy Peake"

 }

]

}

The data is live, so you will probably see a slightly different result. The

data format is called JSON (pronounced like ‘Jason’).

What is JSON?

JSON is a format for storing and sharing data. JSON (say Jason)

stands for JavaScript Object Notation, but it isn’t just used with

JavaScript.

JSON is a text format that can be used in code and is fairly easy

for people to read.

{

"name": "Ogre",

"size": 90,

"power": 86,

"intelligence": 12,

"magic": 0

}

A JSON object is a list of key-value pairs inside curly brackets {} .

A value can also be a list inside square brackets [] :

{

"name": "Ogre",

"size": 90,

"power": 86,

"intelligence": 12,

"magic": 0,

"weapons" : ["club", "rock", "bone"]

}

You need to call the web service from a Python script, so you can use

the results.

• Open this trinket: http://rpf.io/iss-on (http://rpf.io/iss-on).

The urllib.request and json modules have already been

imported for you at the top of the main.py script.

• Add the following code to main.py to store the URL of the web

service you just accessed as a variable:

• Now call the web service:

• Next you need to load the JSON response into a Python data

structure:

You should see something like this:

{'message': 'success', 'number': 3, 'people':

[{'craft': 'ISS', 'name': 'Yuri Malenchenko'},

{'craft': 'ISS', 'name': 'Timothy Kopra'}, {'craft':

'ISS', 'name': 'Timothy Peake'}]}

This is a Python dictionary with three keys: message , number , and

people .

Using key:value pairs in Python

Here is a dictionary of band members. The key is the first part (e.g.

‘john’), and its associated value is the second part (e.g. ‘rhythm

guitar’).

band = {

'john' : 'rhythm guitar',

'paul' : 'bass guitar',

'george' : 'lead guitar',

'ringo' : 'bass guitar'

}

Here’s how to add a key:value pair to the dictionary:

Add a key:value pair

band['yoko'] = 'vocals'

Here’s how to remove a key:value pair from the dictionary:

Remove a key:value pair

del band['paul']

That message has the value success tells you that you

successfully accessed the web service. Note that you will see

different results for number and people depending on who is

currently in space.

Now let’s print the information in a more readable way.

• First, let’s look up the number of people in space and print it:

result['number'] will print the value associated with the key

number in the result dictionary. In the example, this is 3 .

• The value associated with the people key is a list of dictionaries!

Let’s put that value into a variable so you can use it:

You should see something like:

[{'craft': 'ISS', 'name': 'Yuri Malenchenko'},

{'craft': 'ISS', 'name': 'Timothy Kopra'}, {'craft':

'ISS', 'name': 'Timothy Peake'}]

• Now you need to print out a line for each astronaut. You can use a

Python for loop to do this.

For loop with a list in Python

This for loop which will print each item in the animals list.

animals = ["fox", "wolf", "panda", "squirrel"]

for animal in animals:

print(animal)

The output is:

fox

wolf

panda

squirrel

Notice that the print line of code is slightly further to the right.

This is called indentation - the line is indented to show that it is

inside the loop. Any lines of code inside the loop will be repeated.

• Each time through the loop, p will be set to a dictionary for a

different astronaut.

• You can then look up the values for name and craft . Let’s

show the names of the people in space:

You should see something like this:

People in Space: 3

Yuri Malenchenko

Timothy Kopra

Timothy Peake

Note: You are using live data, so your results will depend on the

number of people currently in space.

Step 4 Challenge: show the craft

In addition to the name of the astronauts, the web service also

provides the craft that they are on, such as the ISS.

• Can you add to your script so that it also prints out the craft for

each astronaut?

Example:

People in Space: 3

Yuri Malenchenko in ISS

Timothy Kopra in ISS

Timothy Peake in ISS

Change your for loop so it looks like this:

for p in people:

print(p['name'], ' in ', p['craft'])

Step 5 Where is the ISS?

The International Space Station is in orbit around Earth. It completes

an orbit of the earth roughly every hour and a half, and travels at an

average speed of 7.66 km per second. It’s fast!

Let’s use another web service to find out where the International

Space Station is.

• First open the URL for the web service in a new tab in your web

browser: http://api.open-notify.org/iss-now.json

(http://api.open-notify.org/iss-now.json)

You should see something like this:

{

"iss_position": {

 "latitude": 8.54938193505081,

 "longitude": 73.16560793639105

},

"message": "success",

"timestamp": 1461931913

}

The result contains the coordinates of the spot on Earth that the ISS

is currently over.

What are latitude and longitude?

Latitude and Longitude

Latitude and longitude are used to give coordinates to locations on

the Earth’s surface.

Latitude indicates the position along the north-south axies, and

can be any value between 90 and -90. 0 marks the equator.

Longitude indicates the position along the east-west axis, and can

be any value between -180 and 180. 0 marks the prime meridian,

which runs through Greenwich in London, UK.

Coordinates are given as (latitude, longitude). The coordinates of

the Royal Observatory at Greenwich are (51.48, 0). As you can see,

the latitude (north-south) position is given first.

You can look up the latitude and longitude of places at latlong.net

(http://www.latlong.net/).

• Now you need to call the same web service from Python. Add the

following code to the end of your script to get the current location

of the ISS:

• Let’s create variables to store the latitude and longitude, and then

print them:

Step 6 Plotting the ISS on a map

It would be useful to show the position on a map. You can do this

using Python Turtle graphics!

• First we’ll need to import the turtle Python library:

• Next, load a world map as the background image. There’s one

already included in your trinket called ‘map.gif’! NASA has

provided this beautiful map and given permission for reuse.

The map is centered at (0,0) latitude and longitude, which is just

what you need.

• You need to set the screen size to match the size of the image,

which is 720 by 360 pixel. Add screen.setup(720,

360) :

• You want to be able to send the turtle to a particular latitude and

longitude. To make this easy, you can set the screen to match the

coordinates you’re using:

Now the coordinates will match the latitude and longitude

coordinates that you get back from the web service.

• Let’s create a turtle icon for the ISS. Your trinket includes ‘iss.gif’

and ‘iss2.gif’ — try them both and see which one you prefer.

Changing Python Turtle icons

Changing Python Turtle icons

Instead of always using a turtle, you can tell the Python Turtle icon

to use a different image. The image should be small, so that it does

not cover up too much of the screen: 50 × 50 pixels will give you a

large icon.

• First you need to register the image with the screen :

screen = turtle.Screen()

screen.register_shape('happy.png')

• Then you can set the shape :

turtle.shape('happy.png')

• Turtle icons face right to start with. You can change the

heading to get your image to face upwards:

turtle.setheading(90) # face upwards

See an example here:

Your code should look like this:

• The ISS starts off in the centre of the map, now let’s move it to

the correct location:

Note: latitude is normally given first, but we need to give longitude

first when plotting (x,y) coordinates.

• Test your program by running it. The ISS should move to its

current location above Earth.

• Wait a few seconds and run your program again to see where the

ISS has moved to.

Step 7 When will the ISS be overhead?

There’s also a web service that you can use to find out when the ISS

will next be over a particular location.

Let’s find out when the ISS will next be over the Space Centre in

Houston, USA, which is at latitude 29.5502 and longitude 95.097 .

• First let’s plot a dot on the map at these coordinates:

Now let’s get the date and time that the ISS is next overhead.

• As before, you can call the web service by entering its URL into

the address bar of a web browser: api.open-notify.org/iss-

pass.json (http://api.open-notify.org/iss-pass.json)

You should see an error:

This web service takes latitude and longitude as inputs, so you have

to include them in the URL. Inputs are added after a ? and separated

with & .

• Add the lat and lon inputs to the url as shown: api.open-

notify.org/iss-pass.json?lat=29.55&lon=95.1

(http://api.open-notify.org/iss-pass.json?

lat=29.55&lon=95.1)

The response includes several pass-over times, and we’ll just look at

the first one. The time is given as a Unix time stamp (you’ll be able to

convert it to a readable time in your Python script).

Unix timestamps

Unix timestamps are a convenient way to store a date and time as

a single number.

A Unix timestamp is the number of seconds since 1 January 1970

in UTC (an international standard for time). For example,

1498734934 is 29 June 2017 at 11:15am.

You can find the current Unix timestamp at unixtimestamp.com

(http://www.unixtimestamp.com/).

• Now let’s call the web service from Python. Add the following

code to the end of your script:

• Now let’s get the first pass-over time from the result. Add the

following code:

We’ll need the Python time module so we can print it in a readable

form and convert it to local time. Then we’ll get the script to write the

pass-over time by the dot for Houston.

• Add an import time line at the top of your script:

• The time.ctime() function will convert the time stamp to a

readable form that you can write onto your map:

(You can remove the print line, or turn it into a comment by adding

at the start so your script will ignore it.)

• If you like, you can change the colour and format of the text.

Writing text with Python turtle

You can use a turtle to write text.

turtle.write('Hello!')

Set the turtle’s color to create coloured text:

turtle.color('deep pink')

turtle.write('Hello!')

You can also change the font and alignment of the text.

style = ('Courier', 30, 'italic')

turtle.write('Hello!', font=style, align='center')

The font is a tuple containing:

• The font name such as ‘Arial’, ‘Courier’, or ‘Times New Roman’

• The font size in pixels

• The font type, which can be ‘normal’, ‘bold’, or ‘italic’

To set the alignment which controls how the text is positioned

based on the position of the turtle, use the align parameter.

align can be set to one of these options: ‘left’, ‘center’, ‘right’

Example:

Step 8 Challenge: find more pass-over times

To look up the latitude and longitude of a location you are interested

in, you can use a website such as www.latlong.net/

(http://www.latlong.net/).

• Can you look up and plot the pass-over times for more locations?

Here’s an example using the location of the Baikonur Cosmodrome,

a spaceport in southern Kazakhstan. The code goes at the end of

your program, after plotting the Houston Space Center pass-over

time.

Baikonur Cosmodrome

lat = 45.86

lon = 63.31

location.penup()

location.color('orange')

location.goto(lon,lat)

location.dot(5)

location.hideturtle()

url = 'http://api.open-notify.org/iss-pass.json?

lat=' + str(lat) + '&lon=' + str(lon)

response = urllib.request.urlopen(url)

result = json.loads(response.read())

#print(result)

over = result['response'][1]['risetime']

location.write(time.ctime(over))

Try adding more locations!

Published byRaspberry Pi Foundation (https://www.raspberrypi.org)under aCreative Commons

license (https://creativecommons.org/licenses/by-sa/4.0/).

View project & license on GitHub (https://github.com/RaspberryPiLearning/where-is-the-space-

station)

